skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Search for: All records

Creators/Authors contains: "Pal, Bishwanath"

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. In this paper, we present a polarimetric image restoration approach that aims to recover the Stokes parameters and the degree of linear polarization from their corresponding degraded counterparts. The Stokes parameters and the degree of linear polarization are affected due to the degradations present in partial occlusion or turbid media, such as scattering, attenuation, and turbid water. The polarimetric image restoration with corresponding Mueller matrix estimation is performed using polarization-informed deep learning and 3D Integral imaging. An unsupervised image-to-image translation (UNIT) framework is utilized to obtain clean Stokes parameters from the degraded ones. Additionally, a multi-output convolutional neural network (CNN) based branch is used to predict the Mueller matrix estimate along with an estimate of the corresponding residue. The degree of linear polarization with the Mueller matrix estimate generates information regarding the characteristics of the underlying transmission media and the object under consideration. The approach has been evaluated under different environmentally degraded conditions, such as various levels of turbidity and partial occlusion. The 3D integral imaging reduces the effects of degradations in a turbid medium. The performance comparison between 3D and 2D imaging in varying scene conditions is provided. Experimental results suggest that the proposed approach is promising under the scene degradations considered. To the best of our knowledge, this is the first report on polarization-informed deep learning in 3D imaging, which attempts to recover the polarimetric information along with the corresponding Mueller matrix estimate in a degraded environment. 
    more » « less